Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.



This seminar is intended for the personnel and students at the University of Oxford and the Oxford University Hospitals Foundation Trust.

Online Seminar - please follow the link here to register.



In true digenic inheritance (DI), pathogenic variants at two independent loci must be inherited together to result in disease manifestation. While thousands of monogenic diseases have been identified, only a very small number of DI diseases are known. We had originally proposed SRPK3, an X-linked serine/arginine protein kinase, as a candidate gene for centronuclear myopathy with cores. However, further interrogation of the SRPK3 pedigrees suggested that variants in this gene were not sufficient to cause disease. Through whole exome sequencing analysis, we identified heterozygous, predominantly truncating, variants in a second locus, the TTN gene, in all patients of the initial cohort. Thanks to an extensive international collaboration, we have now gathered a cohort of 36 families where pathogenic variants in both genes must be present for the myopathy to manifest. The double heterozygosity was not seen amongst 125,000 control individuals interrogated, nor is it due to an overall high frequency of TTN truncating variants, as these were significantly more common in the SRPK3 patients than in other genetically diagnosed recessive LGMD cohorts, strongly suggesting our findings are not due to chance. Furthermore, double mutant zebrafish reproduce our findings, where the srpk3-/-;ttn1+/- embryos show a severe muscle phenotype not observed in the srpk3-/- or ttn1+/- embryos alone. We therefore propose that this novel congenital myopathy is caused by digenic inheritance of pathogenic variants in SRPK3 and TTN.



Professor Volker Straub, Director of the John Walton Muscular Dystrophy Research Centre and the Deputy Dean for the University’s Translational and Clinical Research Institute.

Professor Straub's interest in muscle diseases is in translational research. The overall goal of the Research Centre in Newcastle is to accelerate the development and delivery of treatments for patients with neuromuscular diseases. His current research involves the application of muscle imaging, the use of zebrafish and mouse models, next generation sequencing and other –omics technologies for the characterization of genetic neuromuscular disorders. He was the co-founder of the EU FP6 funded network of excellence for genetic neuromuscular diseases, TREAT-NMD. He is the CI/ PI for a number of natural history and interventional trials in Duchenne muscular dystrophy, limb girdle muscular dystrophy, Pompe disease, spinal muscular atrophy and other NMDs.
He is currently the president of the World Muscle Society and an author on >350 peer-reviewed publications.